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One-Dimensional Falling Bodies
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It is shown that a macroscopic system of classical hard rods with next neighbor
interactions attains a phase separation under a weak gravitational field.

KEY WORDS: One-dimensional; classical fluid; next neighbor; gravitational
field; phase separation

1. INTRODUCTION

We start out from a system of n (identical) hard rods with next neighbor
pair interactions V . In this case, we can number the particles sequentially:
q1 � · · · �qn, where qi denotes the position of particle i. We assume that
the interaction between two particles at distance x has the form

V (x)=Ej (x) (1a)

with E >0 and

j (x)=




∞ if 0�x <a,

h(x)∈ [−1,0] if a �x �b,

0 if x >b.
(1b)

As a normalization, we suppose that h actually attains the value −1 in
the interval [a, b]. Furthermore, we take h to be continuous. This form of
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the pairwise potential means that we deal with one-dimensional hard cores
of diameter a and that there is an attractive interaction of finite-range b

which is bounded below by −E , as well.
The aim of this article is to show that this simple one-dimensional

fluid, which thermodynamically would have no phase transition at all (see,
e.g., ref. 1, 5.6.7 Theorem (Van Hove)), attains one macroscopically under
the action of a weak gravitational field.

So, let us add a homogeneous gravitational field to our model. Upon
selecting units such that the mass of the particles equals 1, the external
potential thus is

U(x)=gx, (2)

where g is the acceleration due to gravity and x the coordinate parallel to
the field. This completes the characterization of the Hamiltonian.

Classical equilibrium statistical mechanics is then determined by the
(configurational) isothermal–isobaric (probability) measure thereof (see,
e.g., ref. 1). If the first particle is fixed at the origin, i.e., q1 = 0, and we
let

xi =qi+1 −qi for 1� i <n,

then the relative positions x1, . . . , xn−1 turn into independent random vari-
ables, and their marginal densities are easily written down: The density of
xi is given by

fi(x)=�(β((n− i)g +p))−1 exp(−β(V (x)+ ((n− i)g +p)x)), (3a)

where

�(t)=
∫ ∞

0
exp(−βV (x)− tx) dx. (3b)

In this density, β represents the inverse (absolute) temperature, and the
pressure p is to be identified with the additional external force exerted on
particle n.
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2. MAIN THEOREM

The rough idea is that our model system (as characterized by (1)
and (2)) exhibits a non-uniform profile with a proper interface between
a dense “condensate” and a dilute “gas”. Here the key is the concept of
clustered (connected or condensed) particles. We say that two particles are
condensed if they interact through the attractive part of the pair potential
(i.e., the distance between them is less than b). Then the “condensate” is
to be interpreted as meaning a particle system wherein all pairs are con-
densed, and the “gas” is defined (complementary) as system composed of
non-condensed particles (cf. ref. 2).

A direct application of this idea fails, however; namely, with a fixed
external (gravitational) field (2), and in the (infinite-particle or thermody-
namic) limit n→∞, there is no gas at all. Rather, almost all the particles
end up stacked on top of each other (cf. ref. 3). We will resolve this prob-
lem by letting the strength of the field diminish gradually as n increases.
Intuitively, this is in tune with our understanding of physics, as gravity is
known to be the weakest among the fundamental forces.

We are now going to formulate our main theorem. To do so, fix ε >0
and let n1 and n2 be chosen as the largest numbers such that

P(xn1 >b)<ε,

and

P(xn2 >b)<1− ε.

By our assumptions, it is readily seen that the probability P(xi > b) is
increasing as i increases, so n1 < n2, and that this probability is < ε for
all i <n1, and �1− ε for i >n2. Our theorem then states as follows.

Theorem 1. Let β >0 and p=0 be given and let E and g be chosen
so that

βE = c1 log n,

and

βg = c2
log n

n
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with 0 < c1 < 1 and c2 > 0. Then, as n → ∞, the following limits hold in
probability.

qn1

qn

→ θ ∈ (0,1)

as well as

qn2 −qn1

qn

→0.

More precisely, it holds that

qn2 −qn1

n(log n)−1
→ 1

c2
log

(
1− ε

ε

)
.

Proof. This theorem is proved by showing that qn1 , qn2 , and qn obey
the law of large numbers (see, e.g., ref. 4).

First, we look at qn. Let

�(t)= log �(t).

Then

E(xi)=−� ′(β(n− i)g),

and thus

E(qn)=−
n−1∑
i=1

� ′(β(n− i)g).

For all sufficiently large n, the sum can be approximated by an integral,
so that

E(qn)= 1
βg

(�(βg)−�(β(n−1)g))(1+o(1)).

Moreover, since h is a bounded continuous function on [a, b], we have

�(βg)= log n(1+o(1))
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as well as

�(β(n−1)g)=d log n(1+o(1)),

where d = supa �x �b(−c1h(x)− c2x). Hence

lim
n→∞

E(qn)

n
= 1−d

c2
>a

as desired.
Next, let us consider

P(xi >b)= 1

1+β(n− i)g exp(β(n− i)gb)
∫ b

a
exp(−β(Eh(x)+ (n− i)gx))dx

.

This probability tends to zero if

n− i =n1−c1 ,

whereas it tends to one as n tends to infinity if

n− i =n1−c1−δ

for any δ >0, and therefore

lim
n→∞

log (n−n1)

log n
= lim

n→∞
log (n−n2)

log n
=1− c1.

Consequently, upon determining the leading order asymptotic behavior of
the expectations as above, we find that

lim
n→∞

E(qn −qn1)

n
= lim

n→∞
E(qn −qn2)

n
= 1− c1

c2
.

In order to establish the convergence in probability that is claimed in
the theorem, we take a look at the variances. To this end, we can regard
the distribution of xi as a mixture of a distribution concentrated on [a, b]
and an exponential distribution shifted to the right by b. Remembering
that the variance of a random variable X that is the mixture of X1 and
X2 with weights r and s =1− r is given by

V(X)= rV(X1)+ sV(X2)+ rs(E(X1)−E(X2))
2,
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we get the estimate

V(xi)�2
(
b2 + 1

(β(n− i)g)2

)

and so

V(qn)=O
( n2

(log n)2

)
.

The same inequality holds for the variances of qn1 and qn2 , of course,
and as these are of smaller order than n2, we obtain via the Chebyshev
inequality (see, e.g., ref. 4), that in probability as n tends to infinity,

lim
n→∞

qn

n
= 1−d

c2

as well as

lim
n→∞

qn1

n
= lim

n→∞
qn2

n
= c1 −d

c2
.

Finally, let us derive the more precise law for the width of the inter-
face. To do so, it is convenient to return to P(xi >b). Taking advantage of
the fact that β(n− i)g tends to zero as n tends to infinity for n1 � i �n2,
we can simplify this probability to

P(i)=P(xi >b)= 1

1+ (n− i)/C
(1+o(1)) for n1 � i �n2,

where

C = 1

βg
∫ b

a
exp(−βEh(x))dx

.

From this, it readily follows that

i1 =n−n1 = 1− ε

ε
C(1+o(1)),

and

i2 =n−n2 = ε

1− ε
C(1+o(1)).
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Using again the mixture argument, the expectation of xi is obtained
as

E(xi)=yi +P(i)
1

β(n− i)g
for n1 � i �n2

with yi �2b. So,

lim
n→∞

E(qn2 −qn1)

n(log n)−1
= lim

n→∞
E(

∑n2−1
i=n1

xi)

n(log n)−1

= 1
c2

lim
n→∞

i1∑
k=i2+1

1
1+k/C

1
k
(1+o(1))

= 1
c2

log
(1− ε

ε

)
.

With the same method that we applied to the variance of qn, we can
show that the variance of qn2 −qn1 satisfies

V(qn2 −qn1)=O
( n2

n1(log n)2

)
.

This establishes the convergence in probability and completes the proof of
our theorem.

3. DISCUSSION

We now interprete Theorem 1 physically. For large n, with high prob-
ability, the total volume qn of our system consists of three regions. First,
there is a (dense) part of size qn1 which contains mostly condensate with
a few “bubbles” of gas, then there is an interface where the two phases
mix, and the remaining space is occupied by gas with only a few occa-
sional “droplets” of condensate. Both the condensate and the gas use up
an almost fixed fraction of the available space, whereas the width of the
interface is small (i.e., of order 1/ log n) in comparison to the total length
of the system. Thus, with high probability, a separation of phases occurs.

We also observe that the condition p = 0 is handy for the calcula-
tions, but for the qualitative result it is only necessary that p is not too
large. The case of non-zero p can be reduced to this special case by add-
ing p/g particles at the top and considering only the first n particles of
this enlarged system—see (3).
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Finally, it is interesting to ask what the effect becomes in, say, the
grand isothermal–isobaric format wherein the fixed number of particles n

is replaced by a random number N (see, e.g., ref. 5). Let us choose the
associated activity parameter in such a way that the probability for N =k

attains its maximum at k =n (and the other parameters as before). Then
one can show that the distribution of N is approximately normal with
mean n and a variance of order n/ log n, so that, in a typical configura-
tion, the number of particles is close to n. This means that for the purpose
of deducing the behavior of our macroscopic system, the isothermal–iso-
baric measure and the grand isothermal–isobaric measure give essentially
the same answers. In particular, the interface structure will not be averaged
out in the grand isothermal–isobaric version.
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